模型压缩(例如修剪和量化)已广泛应用于在资源有限的经典设备上优化神经网络。最近,对变分量子电路(VQC)的兴趣越来越大,即量子计算机上的一种神经网络(又称量子神经网络)。众所周知,近期的量子设备具有高噪声和有限的资源(即量子位,Qubits);但是,如何压缩量子神经网络尚未得到彻底研究。人们可能会认为将经典压缩技术应用于量子场景是很简单的。但是,本文表明,量子和经典神经网络的压缩之间存在差异。根据我们的观察,我们声称必须参与压缩过程。最重要的是,我们提出了第一个系统的框架,即CompVQC,以压缩量子神经网络(QNNS)。在CompVQC中,关键组件是一种新型的压缩算法,该算法基于乘数的交替方向方法(ADMM)。方法。实验证明了COMPVQC的优势,以微不足道的精度下降(<1%)降低了电路深度(几乎超过2.5%),这表现优于其他竞争对手。另一个有前途的事实是,我们的COMPVQC确实可以促进QNN在近期噪声量子设备上的鲁棒性。
translated by 谷歌翻译
Navier-Stokes方程是描述液体和空气等流体运动的重要部分微分方程。由于Navier-Stokes方程的重要性,有效的数值方案的发展对科学和工程师都很重要。最近,随着AI技术的开发,已经设计了几种方法来整合深层神经网络,以模拟和推断不可压缩的Navier-Stokes方程所控制的流体动力学,这些方程可以以无网状和可不同的方式加速模拟或推断过程。在本文中,我们指出,现有的深入Navier-Stokes知情方法的能力仅限于处理非平滑或分数方程,这在现实中是两种关键情况。为此,我们提出了\ emph {深入的随机涡流方法}(drvm),该方法将神经网络与随机涡流动力学系统相结合,等效于Navier-Stokes方程。具体而言,随机涡流动力学激发了用于训练神经网络的基于蒙特卡洛的损失函数,从而避免通过自动差异计算衍生物。因此,DRVM不仅可以有效地求解涉及粗糙路径,非差异初始条件和分数运算符的Navier-Stokes方程,而且还继承了基于深度学习的求解器的无网格和可区分优势。我们对凯奇问题,参数求解器学习以及2-D和3-D不可压缩的Navier-Stokes方程的逆问题进行实验。所提出的方法为Navier-Stokes方程的仿真和推断提供了准确的结果。特别是对于包括奇异初始条件的情况,DRVM明显胜过现有的PINN方法。
translated by 谷歌翻译
随机部分微分方程(SPDE)是在包括大气科学和物理学在内的许多领域建模动力学的重要工具。神经操作员,几代神经网络具有无限维空间之间学习图的能力,是解决参数PDE的强大工具。但是,他们缺乏建模SPDE的能力,而SPDE通常由于驾驶噪声而定期较差。由于规律性结构的理论在分析SPDE方面取得了巨大成功,并提供了概念模型的特征向量,使SPDES的解决方案良好,我们提出了具有规律性结构(NORS)的神经操作员,该神经操作员结合了用于建模由SPDES驱动的动力学的功能向量。我们对各种SPDE进行实验,包括动态PHI41模型和2D随机Navier-Stokes方程,结果表明NORS是分辨率不变的,有效的,并且在较小量的数据级较低的误差中降低了一个数量级误差。
translated by 谷歌翻译
作为一种完全致动的系统,全向多电流飞机(OMAVS)的机动性比传统不足的多电流飞机具有更灵活的机动性,并且它在复杂环境中的障碍物避免飞行中也具有更大的优势。可以发挥OMAV的潜力的整个自由轨迹。到配置空间的高维度,使设计的轨迹生成算法有效且可扩展是一项挑战。本文旨在实现复杂环境中OMAV的障碍避免计划。 OMAVS的6-DOF轨迹生成框架首次根据几何约束的最小控制工作(MINCO)轨迹生成框架设计。根据一系列凸Polyhedra代表的安全区域,与飞机的整体形状和整体形状和整体形状和整体形状和结合在一起。动态约束,该框架最终生成了无碰撞的最佳6-DOF轨迹。车辆的态度通过立体图投影将参数化为3D矢量。基于凉亭和PX4自动驾驶仪的示意实验是为了验证提议的框架的性能。
translated by 谷歌翻译
最近,视觉变压器(VIT)在计算机视野中连续建立了新的里程碑,而高计算和内存成本使其在工业生产中的传播困难。修剪是一种用于硬件效率的传统模型压缩范例,已广泛应用于各种DNN结构。尽管如此,它含糊不清,如何在vit结构上进行独家修剪。考虑三个关键点:结构特征,VITS的内部数据模式和相关边缘设备部署,我们利用输入令牌稀疏性并提出了一种计算感知软修剪框架,可以在扁平的vanilla变压器上设置。和CNN型结构,例如基于池的Vit(坑)。更具体地说,我们设计了一种基于动态关注的多头令牌选择器,它是一个轻量级模块,用于自适应实例 - 明智令牌选择。我们进一步引入了一种软修剪技术,它将选择器模块生成的较少的信息令牌集成到将参与后续计算的包令牌,而不是完全丢弃。我们的框架通过我们所提出的计算感知培训策略,我们通过特定边缘设备的准确性和计算限制之间的权衡。实验结果表明,我们的框架显着降低了VIT的计算成本,同时在图像分类上保持了可比性。此外,我们的框架可以保证所识别的模型,以满足移动设备和FPGA的资源规范,甚至在移动平台上实现DEIT-T的实时执行。例如,我们的方法在移动设备上减少了DEIT-T至26毫秒的延迟(26%$ \ SIM 41%的41%),在移动设备上,在0.25%$ \ sim $ 4%的ImageNet上的前1个精度高出4%。我们的代码即将发布。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
translated by 谷歌翻译
Decompilation aims to transform a low-level program language (LPL) (eg., binary file) into its functionally-equivalent high-level program language (HPL) (e.g., C/C++). It is a core technology in software security, especially in vulnerability discovery and malware analysis. In recent years, with the successful application of neural machine translation (NMT) models in natural language processing (NLP), researchers have tried to build neural decompilers by borrowing the idea of NMT. They formulate the decompilation process as a translation problem between LPL and HPL, aiming to reduce the human cost required to develop decompilation tools and improve their generalizability. However, state-of-the-art learning-based decompilers do not cope well with compiler-optimized binaries. Since real-world binaries are mostly compiler-optimized, decompilers that do not consider optimized binaries have limited practical significance. In this paper, we propose a novel learning-based approach named NeurDP, that targets compiler-optimized binaries. NeurDP uses a graph neural network (GNN) model to convert LPL to an intermediate representation (IR), which bridges the gap between source code and optimized binary. We also design an Optimized Translation Unit (OTU) to split functions into smaller code fragments for better translation performance. Evaluation results on datasets containing various types of statements show that NeurDP can decompile optimized binaries with 45.21% higher accuracy than state-of-the-art neural decompilation frameworks.
translated by 谷歌翻译
Driven by improved architectures and better representation learning frameworks, the field of visual recognition has enjoyed rapid modernization and performance boost in the early 2020s. For example, modern ConvNets, represented by ConvNeXt, have demonstrated strong performance in various scenarios. While these models were originally designed for supervised learning with ImageNet labels, they can also potentially benefit from self-supervised learning techniques such as masked autoencoders (MAE). However, we found that simply combining these two approaches leads to subpar performance. In this paper, we propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation. We also provide pre-trained ConvNeXt V2 models of various sizes, ranging from an efficient 3.7M-parameter Atto model with 76.7% top-1 accuracy on ImageNet, to a 650M Huge model that achieves a state-of-the-art 88.9% accuracy using only public training data.
translated by 谷歌翻译